Sorting Algorithms

Bubble Sort

e Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the
adjacent elements if they are in wrong order.

® The bubble sort algorithm isn't efficient as its average-case complexity is O(n?) and worst-case

complexity is O(n?).

First Pass:

(51428)->(15428), Here, algorithm compares the first two elements, and
swaps since 5> 1.

(15428)->(14528),Swapsince5>4
(14528)->(14258),Swap since 5> 2

(14258)->(14258), Now, since these elements are already in order (8 > 5),
algorithm does not swap them.

Second Pass:

(14258)->(14258)

(14258)->(12458),Swap since4>2

(12458)->(12458)

(12458)->(12458)

Now, the array is already sorted, but our algorithm does not know if it is completed.
The algorithm needs one whole pass without any swap to know it is sorted.

void bubble sort(long list[], long n)

{
long: ¢, d, T}

for (c=0 ; c<n -1; c++) {
for (d=0 ; d<n-c-1; d++) {
if (list[d] > list[d+1]) {
/* Swapping */

t = list[d];
list[d] = list[d+1];
list[d+1] = t;

}
}
}
}

Merge Sort

Merge Sort is a Divide and Conquer algorithm. It divides input array in two halves, calls itself
for the two halves and then merges the two sorted halves. The merge() function is used for
merging two halves. The merge(arr, |, m, r) is key process that assumes that arr[l..m] and
arr[m+1..r] are sorted and merges the two sorted sub-arrays into one.

MergeSort(arr[], 1, r)
It > 1
1. Find the middle point to divide the array into two halves:
middle m = (l+r)/2
2. Call mergeSort for first half:
Call mergeSort(arr, 1, m)
3. Call mergeSort for second half:
Call mergeSort(arr, m+l, r)
4. Merge the two halves sorted in step 2 and 3:
Call merge(arr, 1, m, r)

https://www.geeksforgeeks.org/divide-and-conquer-introduction/

These numbers indicate

the order in which 38 (27 (43 |3 |9 |82]|10
steps are Processed\———_—%all
38 |27 (43 | 3 982 |10
J [Tz
38 | 27 43 | 3 9 | 82 10
>/ T
/ 4 &
38 27 43 3 9 82 10
4 5 \8 / [¢] 14 /1 5 J
27 | 38 3|43 9 | 82 10
6 l1 0 16 18
3|27 |38 |43 91|10 |82
1 19

3(9]|10 (27

38

82

20

void sort(int low, int high) {
int mid;

if(low < high) {
mid = (low + high) / 2;
sort{low, mid);
sort(mid+1, high);
merging(low, mid, high);

} else {
return;

}

}

int main() {
int 1i;

printf("List before sorting\n");

for(i = 0; i <= max; i++)
printf(“"%sd *, alil);

sort(@, max);
printf("\nList after sorting\n");

for(i = 0; i <= max; i++)
printf(”"sd ", alil);

void merging(int low, int mid, int high) {
ink 41, 2,193

for(11 = low, 12 = mid + 1, i = low; 11 <= mid && 12 <= high; i++) {
if(alll] <= a[l2])

bli] = a[ll++];
else
bli] = a[l2++];

}

while(11 <= mid)
bli++] = a[ll++];

while(12 <= high)
bli++] = a[l2++];

for(i = low; 1 <= high; i++)
ali] = bli];

Quick Sort

Like Merge Sort, QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and partitions

the given array around the picked pivot. There are many different versions of quickSort that pick pivot in

different ways.

1.

2
3.
4

Always pick first element as pivot.
Always pick last element as pivot (implemented below)
Pick a random element as pivot.

Pick median as pivot.

The key process in quickSort is partition(). Target of partitions is, given an array and an element x of array

as pivot, put x at its correct position in sorted array and put all smaller elements (smaller than x) before x,

and put all greater elements (greater than x) after x. All this should be done in linear time.

http://quiz.geeksforgeeks.org/merge-sort/

{10, 80, 30, 90, 40, 50,
Aion arom\
70 (Last element)
{10, 30, 40, ‘ {90, (80
Partmon aroun / \ / Partition around 80
{10, 30, i {} {} {90}
Partition / \
around
a0 {10, f]
/ Partition
round 30
i

{10}

/* The main function that implements QuickSort
arr[] --> Array to be sorted,
low --> Starting index,
high --> Ending index */
void quickSort(int arr[], int low, int high)
{
if (low < high)
{
/* pi is partitioning index, arr[p] is now
at right place */
int pi = partition(arr, low, high);

// Separately sort elements before
// partition and after partition
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

/* This function takes last element as pivot, places
the pivot element at its correct position in sorted
array, and places all smaller (smaller than pivot)
to left of pivot and all greater elements to right
of pivot */

int partition (int arr[], int low, int high)

{
int pivot = arr[high]; // pivot
int i = (low - 1); // Index of smaller element

for (int j = low; j <= high- 1; j++)

{
// If current element is smaller than the pivot
if (arr[j] < pivot)
{
i++; // increment index of smaller element
swap(&arr[i], &arr[]]);
1
}

swap(&arr[i + 1], &arr[high]);
return (i + 1);

Insertion Sort

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in your
hands. The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are

picked and placed at the correct position in the sorted part.
Algorithm

To sort an array of size n in ascending order:

1: Iterate from arr[1] to arr[n] over the array.

2: Compare the current element (key) to its predecessor.

3: If the key element is smaller than its predecessor, compare it to the elements before. Move the greater

elements one position up to make space for the swapped element.

Insertion Sort Execution Example

2 10 12 1 S 6

2 10 12 1 S 6

4 3
‘g 10] [12 1 3 6

/* Function to sort an array using insertion sort*/
void insertionSort(int arr[], int n)
{
int i, key, j;
for (1 =1; i < n; i++) {
key = arr[i];
)7 s

/* Move elements of arr[0..i-1], that are
greater than key, to one position ahead
of their current position */
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
s i Gk

1

arr[j + 1] = key;

Selection Sort

The selection sort algorithm sorts an array by repeatedly finding the minimum element (considering ascending

order) from unsorted part and putting it at the beginning. The algorithm maintains two subarrays in a given array.
1) The subarray which is already sorted.
2) Remaining subarray which is unsorted.

In every iteration of selection sort, the minimum element (considering ascending order) from the unsorted

subarray is picked and moved to the sorted subarray.

01-11210] 3

NN %
5[2[0[3

Blue = Current minimum

Find minimum elements in

unsorted array and swap if
2153 required (element not at
correct location already).

Heap Sort

Heap sort is a comparison based sorting technique based on Binary Heap data structure. It is similar to selection sort
where we first find the maximum element and place the maximum element at the end. We repeat the same process

for remaining element.

A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all

nodes are as far left as possible (Source Wikipedia)

A Binary Heap is a Complete Binary Tree where items are stored in a special order such that value in a parent node is
greater(or smaller) than the values in its two children nodes. The former is called as max heap and the latter is called

min heap.

http://en.wikipedia.org/wiki/Binary_tree#Types_of_binary_trees
https://www.geeksforgeeks.org/binary-heap/

Index
Input Data mnnnn

InaMax heap parent [CELEE RV CE)
node s always
greater than or equal
to child nodes

Index 0

Input Data umnﬂn

Ina Max heap parent S ML R VA 2
node is always
greater than or equal
to child nodes

Index

Input Data nmnn

Build Heap

10is greater than 4 §is greater than 4

Index 73 |

Index 7 3 |

Iput Data nﬂmm Input Dt IIIHIIW

CECLSl Remove thenode e Create a Max Heap
node and delete node s always

the last node from greater than or equal
heap to child nodes

Index 7 3 |

Input et EU.

U oreate d Max Heap
nodeis always
greater than or equal

to child nodes 5is greaterthan 4

Index 7 3 |4

Input Dt ﬂ.nnm

R Greate a Max Heap
node i always
qreater than or equal

{0 child nodes

Index " 3 |

It Dat ﬂnn.m

InaMax heap parent SRLELCELCEA VG
nodeds always
qreater than or equal

to child nodes

Index 7 3 |

Input Data .nn“m

ol Removethenode
node and delete
the last node from

heap

Index
Input Data nnnﬂm

Ina Max heap parent [LR) G E
node is always

greater than or equal
to child nodes

Index 7 3 |

Iput Data Enn“m

L e oréated Max Heap
node i always

(reater than or equal
to child nodes

Index
Input Data ﬂnn“.

SCr e Remove the node
node and delete

the last node from
heap

Index

Input Data nﬂnnm

Only one element left in the heap

Algorithm ends

void heapSort(int arr[], int n) {
// Build max heap
for (inti=n/2-1;1>>0; i--)
heapify(arr, n, 1i);

// Heap sort
for (inti=n-1; i>0; i--) {
swap(&arr[0], &arr[i]);

/! Heapify root element to get highest element at root again
heapify(arr, i, 0);
}
}

void heapify(int arr[], int n, int 1) {
// Find largest among root, left child and right child
int largest = i;
int left:=2. %1+ T;
int right = 2 * i + 2;

if (left < n && arr[left] > arr[largest])
largest = left;

if (right < n && arr[right] > arr[largest])
largest = right;

// Swap and continue heapifying if root is not largest
if (largest != 1) {
swap(&arr[i], &arr[largest]);
heapify(arr, n, largest);
}
}

Selection Sort

Bubble Sort

Insertion Sort

Heap Sort

Quick Sort

Merge Sort

Best
Q(n*2)
Q(n)

Q(n)

Q(n log(n))
Q(n log(n))

Q(n log(n))

Average
6(n"2)
6(n*2)
6(n*2)

6(n log(n))
6(n log(n))

6(n log(n))

Worst
0(n"2)
0(n"2)
0(n*2)
O(n log(n))
0(n*2)

O(n log(n))

